↳ Prolog
↳ PrologToPiTRSProof
ackermann_in(s(M), s(N), Res) → U2(M, N, Res, ackermann_in(s(M), N, Res1))
ackermann_in(s(M), 0, Res) → U1(M, Res, ackermann_in(M, s(0), Res))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Res, ackermann_out(M, s(0), Res)) → ackermann_out(s(M), 0, Res)
U2(M, N, Res, ackermann_out(s(M), N, Res1)) → U3(M, N, Res, ackermann_in(M, Res1, Res))
U3(M, N, Res, ackermann_out(M, Res1, Res)) → ackermann_out(s(M), s(N), Res)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
ackermann_in(s(M), s(N), Res) → U2(M, N, Res, ackermann_in(s(M), N, Res1))
ackermann_in(s(M), 0, Res) → U1(M, Res, ackermann_in(M, s(0), Res))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Res, ackermann_out(M, s(0), Res)) → ackermann_out(s(M), 0, Res)
U2(M, N, Res, ackermann_out(s(M), N, Res1)) → U3(M, N, Res, ackermann_in(M, Res1, Res))
U3(M, N, Res, ackermann_out(M, Res1, Res)) → ackermann_out(s(M), s(N), Res)
ACKERMANN_IN(s(M), s(N), Res) → U21(M, N, Res, ackermann_in(s(M), N, Res1))
ACKERMANN_IN(s(M), s(N), Res) → ACKERMANN_IN(s(M), N, Res1)
ACKERMANN_IN(s(M), 0, Res) → U11(M, Res, ackermann_in(M, s(0), Res))
ACKERMANN_IN(s(M), 0, Res) → ACKERMANN_IN(M, s(0), Res)
U21(M, N, Res, ackermann_out(s(M), N, Res1)) → U31(M, N, Res, ackermann_in(M, Res1, Res))
U21(M, N, Res, ackermann_out(s(M), N, Res1)) → ACKERMANN_IN(M, Res1, Res)
ackermann_in(s(M), s(N), Res) → U2(M, N, Res, ackermann_in(s(M), N, Res1))
ackermann_in(s(M), 0, Res) → U1(M, Res, ackermann_in(M, s(0), Res))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Res, ackermann_out(M, s(0), Res)) → ackermann_out(s(M), 0, Res)
U2(M, N, Res, ackermann_out(s(M), N, Res1)) → U3(M, N, Res, ackermann_in(M, Res1, Res))
U3(M, N, Res, ackermann_out(M, Res1, Res)) → ackermann_out(s(M), s(N), Res)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
ACKERMANN_IN(s(M), s(N), Res) → U21(M, N, Res, ackermann_in(s(M), N, Res1))
ACKERMANN_IN(s(M), s(N), Res) → ACKERMANN_IN(s(M), N, Res1)
ACKERMANN_IN(s(M), 0, Res) → U11(M, Res, ackermann_in(M, s(0), Res))
ACKERMANN_IN(s(M), 0, Res) → ACKERMANN_IN(M, s(0), Res)
U21(M, N, Res, ackermann_out(s(M), N, Res1)) → U31(M, N, Res, ackermann_in(M, Res1, Res))
U21(M, N, Res, ackermann_out(s(M), N, Res1)) → ACKERMANN_IN(M, Res1, Res)
ackermann_in(s(M), s(N), Res) → U2(M, N, Res, ackermann_in(s(M), N, Res1))
ackermann_in(s(M), 0, Res) → U1(M, Res, ackermann_in(M, s(0), Res))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Res, ackermann_out(M, s(0), Res)) → ackermann_out(s(M), 0, Res)
U2(M, N, Res, ackermann_out(s(M), N, Res1)) → U3(M, N, Res, ackermann_in(M, Res1, Res))
U3(M, N, Res, ackermann_out(M, Res1, Res)) → ackermann_out(s(M), s(N), Res)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
ACKERMANN_IN(s(M), s(N), Res) → U21(M, N, Res, ackermann_in(s(M), N, Res1))
ACKERMANN_IN(s(M), s(N), Res) → ACKERMANN_IN(s(M), N, Res1)
U21(M, N, Res, ackermann_out(s(M), N, Res1)) → ACKERMANN_IN(M, Res1, Res)
ACKERMANN_IN(s(M), 0, Res) → ACKERMANN_IN(M, s(0), Res)
ackermann_in(s(M), s(N), Res) → U2(M, N, Res, ackermann_in(s(M), N, Res1))
ackermann_in(s(M), 0, Res) → U1(M, Res, ackermann_in(M, s(0), Res))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Res, ackermann_out(M, s(0), Res)) → ackermann_out(s(M), 0, Res)
U2(M, N, Res, ackermann_out(s(M), N, Res1)) → U3(M, N, Res, ackermann_in(M, Res1, Res))
U3(M, N, Res, ackermann_out(M, Res1, Res)) → ackermann_out(s(M), s(N), Res)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
ACKERMANN_IN(s(M), 0) → ACKERMANN_IN(M, s(0))
ACKERMANN_IN(s(M), s(N)) → ACKERMANN_IN(s(M), N)
U21(M, ackermann_out(Res1)) → ACKERMANN_IN(M, Res1)
ACKERMANN_IN(s(M), s(N)) → U21(M, ackermann_in(s(M), N))
ackermann_in(s(M), s(N)) → U2(M, ackermann_in(s(M), N))
ackermann_in(s(M), 0) → U1(ackermann_in(M, s(0)))
ackermann_in(0, N) → ackermann_out(s(N))
U1(ackermann_out(Res)) → ackermann_out(Res)
U2(M, ackermann_out(Res1)) → U3(ackermann_in(M, Res1))
U3(ackermann_out(Res)) → ackermann_out(Res)
ackermann_in(x0, x1)
U1(x0)
U2(x0, x1)
U3(x0)
From the DPs we obtained the following set of size-change graphs: